skip to Main Content
استنتاج آماری همزمان در مدل‌های عامل پویا: تقریب کای دو و بوت استرپ مبتنی بر مدل

استنتاج آماری همزمان در مدل‌های عامل پویا: تقریب کای دو و بوت استرپ مبتنی بر مدل

عنوان انگلیسی: Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap
سال نشر: ۲۰۱۹
نویسنده: Thorsten Dickhaus,Natalia Sirotko-Sibirskaya
تعداد صفحه فارسی: ۳۷ – تعداد صفحه انگلیسی: ۱۷
دانشگاه: Institute for Statistics, University of Bremen, Germany
نشریه: Process Safety and Environmental Protection
کیفیت ترجمه: ترجمه پلاس

چکیده

متدلوژی استنتاج آماری در مدل‌های عامل پویا (DFMs) در زمینه آزمون چندگانه بر اساس قضیه حد مرکزی برای تبدیلات فوریه تجربی سری‌های زمانی چند متغیره توسعه می‌یابد. این نتیجه نظری امکان استفاده از برداری از آماره آزمون نوع-والد را فراهم می‌سازد که به طور مجانبی از توزیع کای دوی چند متغیره‌ای تحت فرضیه پوچ جهانی، هنگامِ مِیل افق مشاهده به سمت بی‌نهایت، پیروی می‌کند. روال‌های آزمون چندگانه مجانبی چندگانگی-تطبیقی بر اساس آماره والد با روال بوت استرپ مدل-محور ارائه شده در کارهای قبلی اخیر مقایسه می‌شوند. شبیه‌سازی‌های مونت کارلو نشان می‌دهند که هر دوی آزمون کای دوی چندگانه مجانبی با تطبیق مناسب چندگانگی و روال آزمون چندگانگی مبتنی بر بوت استرپ، نرخ خطای خانوادگی را در سطح معناداریِ از پیش تعریف شده حفظ می‌کنند. الگوریتم تقریب و همچنین پیاده‌سازی روال‌ها آزمون به طور دقیق شرح داده شده و کاربردی واقعی روی داده‌های کالای اروپا انجام می‌شود.

Abstract

Statistical inference methodology in dynamic factor models (DFMs) is extended to the multiple testing context based on a central limit theorem for empirical Fourier transforms of multivariate time series. This theoretical result allows for employing a vector of Wald-type test statistics which asymptotically follows a multivariate chi-square distribution under the global null hypothesis when the observation horizon tends to infinity. Multiplicity-adjusted asymptotic multiple test procedures based on Wald statistics are compared with a model-based bootstrap procedure proposed in recent previous work. Monte Carlo simulations demonstrate that both the asymptotic multiple chi-square test with an appropriate multiplicity adjustment and the bootstrap-based multiple test procedure keep the family-wise error rate approximately at the predefined significance level. The estimation algorithm as well as the implementation of the testing procedures are described in detail and a real-life application
۳۵۰,۰۰۰ ریال – خرید
امتیاز شما:
(No Ratings Yet)
Back To Top