عنوان انگلیسی: Distributed host-based collaborative detection for false data injection attacks in smart grid cyber-physical system
سال نشر: ۲۰۱۷
نویسنده: Beibei Li,Rongxing Lu,Wei Wang,Kim-Kwang Raymond Choo
تعداد صفحه فارسی: ۳۳ – تعداد صفحه انگلیسی: ۱۰
دانشگاه: School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore b Faculty of Computer Science, University of New Brunswick, Fredericton, Canada E3B 5A3 c Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249, USA d School of Information Technology & Mathematical Sciences, University of South Australia, Adelaide, SA 5001, Australia
نشریه: Process Safety and Environmental Protection
کیفیت ترجمه: ترجمه پلاس
چکیده
حملات تزریقی داده های نادرست(FDI)، تهدیدات امنیتی مهمی برای سیستم فیزیکی سایبری(CPS) مبتنی بر شبکههوشمند محسوب می شوند، و می تواند منجر به ایجاد فواجع عظیمی در سراسر سیستم قدرت شود. با این حال، مقابله با حملات FDI در CPS مبتنی بر شبکه هوشمند، به دلیل وابستگی شدید به شبکه های اطلاعاتی آزاد چالش برانگیز است. اکثر راهحلهای موجود از نظر محاسباتی گران و بر اساس تخمین حالت (SE) در مرکز کنترل بسیار متمرکز هستند. همچنین این راهحلها بطور کلی، سطح بالایی از تضمین امنیت را فراهم نمیکند، براساس شواهدکارهای اخیر، مشخصاست که حملهکنندگان هوشمندFDI، با شناخت از ساختار سیستم، براحتی میتوانند سیستمهای تشخیصی مبتنی بر SEمربوط به حملات داده های نادرست را دور بزنند. در این مقاله، یک روش تشخیص مشارکتی و توزیع شده نوین مبتنی برهاست، به منظور رسیدگی به این چالش هاپیشنهاد شده است. ما بطور خاص از الگوریتم رای اکثریت، مبتنی بر قواعد مشترک استفاده میکنیم تا دادههای اندازهگیری نادرست و مندرج که با واحد اندازهگیری فازور(PMUs) سازگار شده است، را بصورت مشارکتی تشخیص دهیم. علاوه براین، یک سیستم اعتبار
Abstract
False data injection (FDI) attacks are crucial security threats to smart grid cyber-physical system (CPS), and could result in cataclysmic consequences to the entire power system. However, due to the high dependence on open information networking, countering FDI attacks is challenging in smart grid CPS. Most existing solutions are based on state estimation (SE) at the highly centralized control center; thus, computationally expensive. In addition, these solutions generally do not provide a high level of security assurance, as evidenced by recent work that smart FDI attackers with knowledge of system configurations can easily circumvent conventional SE-based false data detection mechanisms. In this paper, in order to address these challenges, a novel distributed host-based collaborative detection method is proposed. Specifically, in our approach, we use a conjunctive rule based majority voting algorithm to collaboratively detect false measurement data inserted by compromised phasor meas
امتیاز شما: