عنوان انگلیسی: Data mining-based intrusion detectors
سال نشر: ۲۰۰۹
نویسنده: Su-Yun Wu,Ester Yen
تعداد صفحه فارسی: ۲۷ – تعداد صفحه انگلیسی: ۸
دانشگاه: a Department of Information Management, Vanaung University, Taiwan b Mathematical Sciences Research Institute, Berkeley, CA 94720-5070, USA
نشریه: Process Safety and Environmental Protection
کیفیت ترجمه: ترجمه پلاس
چکیده
با گسترش و افزایش محبوبیت اینترنت، موارد حملات اینترنتی رو به افزایش است، و روش های حمله هر روز متفاوت تر هستند، بنابراین مساله ی امنیت اطلاعات به یک مساله ی مهم در جهان تبدیل شده است. امروزه، تشخیص، شناسایی و متوقف کردن موثر این گونه حملات یک نیاز ضروری است. پژوهش حاضر کارآیی روش های یادگیری ماشینی در سیستم تشخیص نفوذ، از جمله درخت دسته بندی و ماشین بردار تامین، را مقایسه می کند، و امید دارد که مرجعی برای ساخت سیستم های تشخیص نفوذ در آینده فراهم کند.
در مقایسه با دیگر مطالعات مرتبط با ردیاب های (آشکارسازهای) نفوذ مبتنی بر داده کاوی، محاسبه ی مقدار میانگین را از طریق نمونه برداری نسبت های مختلف داده های نرمال برای هر اندازه گیری ارائه کرده ایم، که باعث به دست آمدن نرخ دقت بالاتری برای داده های مشاهده ای در دنیای واقعی می شود. دقت، نرخ تشخیص، نرخ هشدار اشتباه را برای چهار نوع حمله مقایسه کرده ایم. بعلاوه، به ویژه برای حملات نوع U2R و نوع R2L، کارآیی بهتری نسبت به روش برنده (winner) KDD نشان می دهد.
در مقایسه با دیگر مطالعات مرتبط با ردیاب های (آشکارسازهای) نفوذ مبتنی بر داده کاوی، محاسبه ی مقدار میانگین را از طریق نمونه برداری نسبت های مختلف داده های نرمال برای هر اندازه گیری ارائه کرده ایم، که باعث به دست آمدن نرخ دقت بالاتری برای داده های مشاهده ای در دنیای واقعی می شود. دقت، نرخ تشخیص، نرخ هشدار اشتباه را برای چهار نوع حمله مقایسه کرده ایم. بعلاوه، به ویژه برای حملات نوع U2R و نوع R2L، کارآیی بهتری نسبت به روش برنده (winner) KDD نشان می دهد.
Abstract
With popularization of internet, internet attack cases are increasing, and attack methods differs each day, thus information safety problem has became a significant issue all over the world. Nowadays, it is an urgent need to detect, identify and hold up such attacks effectively. The research intends to compare efficiency of machine learning methods in intrusion detection system, including classification tree and support vector machine, with the hope of providing reference for establishing intrusion detection system in future. Compared with other related works in data mining-based intrusion detectors, we proposed to calculate the mean value via sampling different ratios of normal data for each measurement, which lead us to reach a better accuracy rate for observation data in real world. We compared the accuracy, detection rate, false alarm rate for four attack types. More over, it shows better performance than KDD Winner, especially for U2R type and R2L type attacks.
امتیاز شما: